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This paper considers Lagrange interpolation in the rational system [1�(x&a1),
1�(x&a2), ...], which is based on the zeros of the Chebyshev polynomial for the
rational system [1, 1�(x&a1), 1�(x&a2), ...] with distinct real poles [ak]�

k=1/
R"[&1, 1]. The corresponding Lebesgue constant is estimated, and is shown to be
asymptotically of order ln n when the poles stay outside an interval which contains
[&1, 1] in its interior. Some well-known results of classical polynomial interpolation
are extended. � 1998 Academic Press
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1. INTRODUCTION

A Chebyshev system [uk]n
k=0 on an interval [a, b] is a set of n+1

continuous functions on [a, b] such that any element of Hn :=span[u0 ,
u1 , ..., un] that has n+1 distinct zeros in [a, b] is identically zero. We say
that [u0 , u1 , ..., un] is a Markov system on [a, b] if each ui # C[a, b] and
[u0 , u1 , ..., um] is a Chebyshev system for each m=0, 1, ..., n.

For a given Chebyshev system [uk]n
k=0 , we can define the generalized

Chebyshev polynomial (cf. [4])

Tn := :
n

k=0

:k uk
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for Hn on [a, b] by equi-oscillation properties. More precisely, there exists
an alternation set of length n+1: a�x0<x1< } } } <xn�b for Tn on [a, b],
that is,

Tn(xk)=(&1)k &Tn &[a, b]=(&1)k, k=0, 1, ..., n,

where &Tn &[a, b] :=maxa�x�b |Tn(x)| is the uniform norm.
Many extremal problems are solved by the Chebyshev polynomials (cf.

[4, 15]) and the denseness of the Markov space is also intimately tied to
the location of the zeros of the associated Chebyshev polynomials (cf.
[2, Theorem 1]). Chebyshev polynomials are ubiquitous and have many
applications (cf. [4, 8, 11, 15]). But, there are very few situations where
Chebyshev polynomials can be explicitly computed. However, explicit
formulae for the generalized Chebyshev polynomials for the trigonometric
rational system

{1,
1\sin t

cos t&a1

,
1\sin t

cos t&a2

, ...,
1\sin t

cos t&an= , n=1, 2, ..., t # [0, 2?),

(1.1)

and for the rational system

{1,
1

x&a1

,
1

x&a2

, ...,
1

x&an= , n=1, 2, ..., x # [&1, 1] (1.2)

with distinct real poles outside [&1, 1] are implicitly contained in Achiezer's
book [1, p. 250]. Recently, Borwein, Erde� lyi, and Zhang [5] derived
analogue Chebyshev polynomials of the first and second kinds for these
systems by constructing certain Blaschke products. It is shown that almost
all elementary properties of the classical Chebyshev polynomials hold in
this case; for details, one can see [5]. Bultheel, Gonza� lez-Vera, Hendriksen,
and Njastad [6] and Djrbashian [7] also considered orthogonal rational
functions.

On the other hand, it is not good enough for the approximation of
functions to use the classical polynomials in many practical problems. For
example, for integrands having poles outside the interval of integration, it
would be more natural to design quadrature rules to integrate exactly rational
functions (not polynomials), which have the same or almost the same poles,
of maximum possible degrees (cf. [9, 18]). Recently, Gautschi [9, 10] has
successfully used this idea for the computation of generalized Fermi�Dirac
and Bose�Einstein integrals. All of these are closely tied to rational inter-
polation based on (1.2).
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In this paper, we are interested in constructing Lagrange interpolations
in the rational system

{1,
1

x&a1

,
1

x&a2

, ...,
1

x&an&1=
and

{ 1
x&a1

,
1

x&a2

, ...,
1

x&an= .

These interpolations are based on the zeros of Chebyshev polynomials of
the first kind for the rational systems (1.2). This extends some well-known
results for the classical polynomial interpolation based on the zeros of the
classical Chebyshev polynomial of the first kind. More precisely, it is shown
that the associated Lebesgue constant is asymptotically of order ln n when
the poles stay outside an interval which contains [&1, 1] in its interior (cf.
Theorem 2.1), and this is similar to classical polynomial interpolation. It is
also shown that the corresponding mean convergence holds (cf. Theorem 2.3).
On the other hand, we obtain a positive quadrature formula that is exact
for

f # span { 1
x&a1

,
1

(x&a1)2 , ...,
1

x&an
,

1
(x&an)2=

(cf. Theorem 2.4). The convergence of this quadrature is also characterized
(cf. Theorem 2.5).

This paper is organized as follows. In Section 2 we introduce our nota-
tions and formulate the main results. Section 3 contains some auxiliary
results which will be used. The proofs of theorems are given in Section 4.
The last section gives some remarks.

2. NOTATIONS AND STATEMENTS OF MAIN RESULTS

In this paper, we denote by Pn the set of all real algebraic polynomials
of degree �n. The symbol ``t'' is used as follows: if A and B are two
expressions depending on some variables and indices, then

AtB � |AB&1|�c and |A&1B|�c.
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Suppose that [ak]n
k=1 /R"[&1, 1] (n=1, 2, ...) are fixed and distinct.

For the rational system

{1,
1

x&a1

,
1

x&a2

, ...,
1

x&an= , n=1, 2, ..., x # [&1, 1], (2.1)

we can construct the Chebyshev polynomials as follows (cf. [5]).
We define the numbers [ck]n

k=1 by

ak :=
ck+c&1

k

2
, |ck |<1. (2.2)

Let

Mn(z) := `
n

k=1

(z&ck), (2.3)

and

fn(z) :=
Mn(z)

znMn(z&1)
. (2.4)

Equation (2.4) is actually a finite Blaschke product. The Chebyshev polyno-
mial of the first kind for the rational system (2.1) is defined by

Tn(x) :=
fn(z)+ f &1

n (z)
2

, x=
z+z&1

2
, |z|=1, (2.5)

while the Chebyshev polynomial of the second kind is defined by

Un(x) :=
fn(z)& f &1

n (z)
z&z&1 , x=

z+z&1

2
, |z|=1. (2.6)

It is shown in [5] that these Chebyshev polynomials preserve almost all
the elementary properties of the classical Chebyshev polynomials. Here we
just state some of these properties which will be used later.

Theorem A (cf. [5, Theorem 1.2, Corollary 4.9]). Assume [ak]�
k=1/

R"[&1, 1]. Let [Tn]�
n=1 and [Un]�

n=1 be defined by (2.5) and (2.6), respec-
tively. Then

(a) Tn # span[1, 1�(x&a1), ..., 1�(x&an)].

(b) &Tn&[&1, 1]=&- 1&x2 Un(x)&[&1, 1]=1.
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(c) Tn(x) has exactly n zeros in [&1, 1]:

&1<xn< } } } <x1<1, (2.7)

and

- 1&x2
k Un(xk)==(&1)k, k=1, 2, ..., n, (2.8)

where ==1 or &1.

The conclusion that Tn(x) has exactly n zeros can also be found in [14].
It should be mentioned that [Tn(x)]�

n=1 are not orthogonal in general
(cf. [5, Lemma 4.4]); this property is different from that of the classical
Chebyshev polynomials.

In order to state the Bernstein�Markov type inequality, we introduce the
function

Bn(x) := :
n

k=1

- a2
k&1

ak&x
, (2.9)

which is called the Bernstein factor, where - a2
k&1 is defined such that

|ck |<1. The Bernstein factor plays an important role in [5].

Theorem B (cf. [5, Corollary 3.4, Theorem 3.5]). Assume the nonreal
elements in [ak]�

k=1 /C"[&1, 1] are paired by complex conjugation. Let
p # span[1, 1�(x&a1), ..., 1�(x&an)]. Then

| p$(x)|�
1

- 1&x2
|Bn(x)| &p&[&1, 1] , x # (&1, 1), (2.10)

and

&p$&[&1, 1]�
n

n&1 \ :
n

k=1

1+|ck |
1&|ck |+

2

&p&[&1, 1] , (2.11)

and equality holds in (2.10) if and only if p(x)=cTn(x), c # R.

Let f be a function defined on [&1, 1]. We construct the Lagrange inter-
polation based on the zeros [xk]n

k=1 of Tn(x) as

Ln( f, x) := :
n

k=1

f (xk) lk(x), (2.12)
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where [lk(x)]n
k=1 are the Lagrange fundamental functions

lk(x) :=
Tn(x)

T $n(xk)(x&xk)
, k=1, ..., n. (2.13)

It is easy to check that

Ln( f, xk)= f (xk), k=1, ..., n,

and Ln( f, x) # span[1�(x&a1), ..., 1�(x&an)].
We denote by E R

n ( f ) the best approximation of f (x) by a linear combi-
nation of the functions [1�(x&a1), ..., 1�(x&an)] on [&1, 1], that is,

ER
n ( f ) := inf

;k # R " f (x)&\ ;1

x&a1

+ } } } +
;n

x&an+"[&1, 1]

. (2.14)

It is well known that the Lebesgue constant of classical polynomial inter-
polation plays an important role in the uniform polynomial approximation.
For given n # N, we also define the associated Lebesgue function

Ln(x) := :
n

k=1

|lk(x)|

and the Lebesgue constant

Ln := max
x # [&1, 1]

Ln(x). (2.15)

Clearly, it depends on [ak]n
k=1 .

To simplify the statements of our results, we first introduce an assumption,
which plays an important role in the proofs our main results.

Definition 2.0. Let [ak]�
k=1 /R"[&1, 1] be distinct. If there exists

some constant : such that

|ak |�:>1, (2.16)

i.e., the poles must stay outside an interval which contains [&1, 1] in its
interior, we say that [ak]�

k=1 /R"[&1, 1] satisfy assumption (A).
It is easy to see that assumption (A) is equivalent to

|ck |�#, k=1, ..., n,

where 0�#=:&- :2&1<1. If this condition is satisfied, we say that
[ck]�

k=1 satisfy assumption (C). For convenience, we often use assumption
(C) later, instead of assumption (A).
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Theorem 2.1. Let [ak]�
k=1 /R"[&1, 1] satisfy assumption (A). Then

Ln tln n. (2.17)

Remarks. 1. In this case, the corresponding Lebesgue constant for the
rational system is asymptotically of order ln n. This is the same as the case
of classical polynomial interpolation based on the zeros of the classical
Chebyshev polynomial of the first kind (cf. [13, Theorem 2, Vol. III, p. 48],
[15], or [16]).

2. Whether (2.17) implies assumption (A) is still open.

With respect to the uniform approximation, we have

Corollary 2.2. Let f # C[&1, 1] and [ak]�
k=1 /R"[&1, 1] satisfy

assumption (A). Then

&Ln( f, x)& f (x)&[&1, 1]�d1(:) ln nE R
n ( f ). (2.18)

Furthermore, if f (x) satisfies the Dini�Lipschitz condition

lim
$ � 0

|( f, $) ln $=0,

then

lim
n � �

Ln( f, x)= f (x)

uniformly on [&1, 1], where |( f, } ) is the modulus of continuity of f and,
throughout this paper, di (:) (i=1, 2, ...) denote some positive constant depending
only on :, respectively.

With respect to mean convergence, we have

Theorem 2.3. Let f # C[&1, 1], [ak]�
k=1 /R"[&1, 1], and [ck] be

defined by (2.2). Then

&Ln( f, x)& f (x)&v, 2�2 - ? E R
n ( f ). (2.19)

In particular, if ��
k=1 (1&|ck | )=�, then

&Ln( f, x)& f (x)&v, 2 � 0, n � �, (2.20)

129INTERPOLATION IN RATIONAL SYSTEMS



where

& f &v, 2 :=\|
1

&1

1

- 1&x2
| f (x)|2 dx+

1�2

.

This extends a result of classical polynomial interpolation (cf. [15,
Theorem 1.7, p. 52] or [17]).

Let

*k :=|
1

&1

lk(x)

- 1&x2
dx, k=1, ..., n. (2.21)

We then obtain a quadrature formula,

|
1

&1

f (x)

- 1&x2
dxrQn( f ) := :

n

k=1

f (xk) *k . (2.22)

We denote its error by

E 0
n( f ) := } |

1

&1

f (x)

- 1&x2
dx&Qn( f )} . (2.23)

With respect to this quadrature formulas we have

Theorem 2.4. Let f # C[&1, 1] and [ak]�
k=1 /R"[&1, 1]. Then

(a) Qn( f ) is a positive quadrature formula, that is, *k>0, k=1, ..., n.

(b) For

f # span { 1
x&a1

,
1

(x&a1)2 , ...,
1

x&an
,

1
(x&an)2= ,

(2.22) is exact.

(c) The error is

E 0
n( f )=O(1) E R

n ( f ). (2.24)

Surprisingly, although our quadrature formula is neither Gaussian quad-
rature nor orthogonal quadrature for the rational functions, it is still a positive
quadrature formula; moreover, it is exact for the 2n rational functions

1
x&a1

,
1

(x&a1)2 , ...,
1

x&an
,

1
(x&an)2 ,
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while Gaussian and orthogonal quadratures may not be exact for the n
rational functions

1
(x&a1)2 , ...,

1
(x&an)2 .

The Gaussian and orthogonal quadratures based on the rational interpola-
tion were recently considered by Van Assche and Vanherwegen [18] and
Gautschi [9].

Theorem 2.5 characterizes the convergence of quadrature formula (2.22).

Theorem 2.5. Let [ak]�
k=1 /R"[&1, 1] and [ck]�

k=1 be defined by (2.2).
Then

lim
n � �

Qn( f )=|
1

&1

f (x)

- 1&x2
dx, \f # C[&1, 1] � :

�

k=1

(1&|ck | )=�.

(2.25)

3. AUXILIARY RESULTS

In order to prove the above theorems, we first prove several auxiliary
results which will be used later.

Lemma 3.1. Let f # C[&1, 1], [ak]�
k=1 /R"[&1, 1], and [ck] be

defined by (2.2). Then

E R
n ( f )�En( f )+(& f &[&1, 1]+En( f )) `

n

k=1

|ck |, (3.1)

where En( f ) is the best approximation of f (x) by the classical polynomials
of degree �n on [&1, 1].

Proof. Let pn(x) :=#n xn+ } } } +#0 (#n {0) be the best polynomial
approximation of degree n to f (x) on [&1, 1], that is,

&pn(x)& f (x)&[&1, 1]=En( f ).

Using [1, Problem 7, p. 254], we know that there exist +k (k=1, ..., n)
such that

" pn(x)
#n

&
1
#n

:
n

k=1

+k

x&ak"�
1

2n&1 `
n

k=1

|ck |. (3.2)
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Thus,

" f (x)& :
n

k=1

+k

x&ak"[&1, 1]

�& f (x)& pn(x)&[&1, 1]+"pn(x)& :
n

k=1

+k

x&ak"[&1, 1]

�En( f )+
|#n |

2n&1 `
n

k=1

|ck |.

Moreover, by Chebyshev inequality (cf. [13, Corollary 2, Vol. I, p. 56]) we
have

|#n |�2n&1 &pn&[&1, 1]�2n&1(& f &[&1, 1]+En( f )).

Then (3.1) follows. K

By the classical Jackson theorem (cf. [13, Vol. 1]) and Lemma 3.1 we
can prove the following corollary in the usual way.

Corollary 3.2. Let f # C[&1, 1] and [ak]�
k=1 /R"[&1, 1] satisfy

assumption (A). If >n
k=1 |ck |=O(1�n), then

ER
n ( f )=O(1)(|( f, 1�n)+1�n). (3.3)

Lemma 3.3 gives an asymptotic estimate for Bernstein factor (2.9), which
plays an important role in the proof of Lemma 3.4.

Lemma 3.3. Let [ak]�
k=1 /R"[&1, 1] satisfy assumption (A), and Bn(x)

be defined by (2.9). Then we have

&Bn&[&1, 1] tn. (3.4)

Proof. It is easy to check that

Bn(x)= :
n

k=1

- a2
k&1

ak&x
= :

n

k=1

|ak&ck |
ak&x

.

From the given assumption and by some simple calculations we have

:
n

k=1

1&|ck |
1+|ck |

� :
n

k=1

|ak&ck |
|ak |+1

�|Bn(x)|� :
n

k=1

|ak&ck |
|ak |&1

� :
n

k=1

1+|ck |
1&|ck |

. (3.5)

Since assumption (A) is equivalent to assumption (C), the conclusion (3.4)
follows from (3.5). K
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In the proof of Lemma 3.5, we need the following lemma.

Lemma 3.4. Let [lk(x)]n
k=1 be defined by (2.13). If [ak]�

k=1/R"
[&1, 1] satisfy assumption (A), then we have

:
n

k=1

l2
k(x)�d2(:). (3.6)

The inequality (3.6) implies

|lk(x)|�- d2(:), k=1, ..., n. (3.7)

Proof. Let T� n(t) :=Tn(cos t) and U� n(t) :=Un(cos t) sin t, where Tn(x)
and Un(x) are the Chebyshev polynomials of the first and second kinds
defined by (2.5) and (2.6), respectively. We then have (cf. [5, Theorem 2.1])

T� $n(t)=&B� n(t) U� n(t), U� $n(t)=B� n(t) T� n(t), t # R,

where B� n(t) :=Bn(cos t). Hence,

T $n(x)=Bn(x) Un(x), U$n(x)=
xUn(x)&Bn(x) Tn(x)

1&x2 . (3.8)

It follows that

T"n(x)=B$n(x) Un(x)+Bn(x) U$n(x). (3.9)

We may suppose that

Tn(x) :=
Qn(x)
Rn(x)

, (3.10)

where Qn(x) :=en(x&x1) } } } (x&xn), Rn(x) :=(x&a1) } } } (x&an), and en

depends on both n and ak . Then

:
n

k=1

1
x&xk

=
T $n(x)
Tn(x)

+
R$n(x)
Rn(x)

=
T $n(x)
Tn(x)

+ :
n

k=1

1
x&ak

, (3.11)

and

:
n

k=1

1
(x&xk)2=

(T $n(x))2&Tn(x) T"n(x)
T 2

n(x)
+ :

n

k=1

1
(x&ak)2 . (3.12)
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By the given assumption, it is easy to see that

1
(x&ak)2�

1
(|ak |&1)2�

1
:2&1

.

Combining (3.8) and Theorem A(c) we have

lk(x)=
Tn(x)

T $n(xk)(x&xk)
==

(&1)k
- 1&x2

k Tn(x)
Bn(xk)(x&xk)

,

where ==1 or &1.
Furthermore, from (3.5) we conclude that

:
n

k=1

l2
k(x)�\1+#

1&#+
2 T 2

n(x)
n2 :

n

k=1

1&x2
k

(x&xk)2 .

It is easy to check that

B$n(x)= :
n

k=1

- a2
k&1

(ak&x)2 .

We have

|B$n(x)|� :
n

k=1

- a2
k&1

(|ak |&1)2=2 :
n

k=1

|ck |
(1&|ck |2)

�
2#

1&#2 n. (3.13)

Note that

:
n

k=1

l2
k(x)�\1+#

1&#+
2 T2

n(x)
n2 :

n

k=1

1&x2
k

(x&xk)2 .

Therefore, combining (3.8)�(3.12), (3.13), and the Markov-type inequality
(2.11) and performing some simple calculations, we easily see that

:
n

k=1

l2
k(x)�\1+#

1&#+
2 T 2

n(x)
n2 :

n

k=1

1&x2+x2&x2
k

(x&xk)2

�\1+#
1&#+

2

{T 2
n(x)(1&x2)

n2 :
n

k=1

1
(x&xk)2+

T 2
n(x)
n2 \ :

n

k=1

2x
x&xk

&n+=
�d2(:),

and the lemma follows. K
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Lemma 3.5 gives the estimate of the distance between two consecutive
zeros of a Chebyshev polynomial of the first kind, which will be used in the
proof of Theorem 2.1.

Lemma 3.5. (i) Assume [ak]�
k=1 /R"[&1, 1]. Let [ck] be defined

by (2.2). If >n
k=1 |ck |=O(1�n), then the largest distance between two

consecutive zeros of a Chebyshev polynomial of the first kind satisfies

Mn := max
1�k�n+1

|xk&xk+1 |=O(1�n), (3.14)

where x0 := 1, xn+1 := &1. Moreover, if [ak]�
k=1 / R"[&1, 1] satisfy

assumption (A), then

|xk&xk+1 |�d3(:)
1
n3 . (3.15)

(ii) Let xk=cos %k , and [ak]�
k=1 /R"[&1, 1] satisfy assumption (A).

Then

|%k+1&%k |t
1
n

. (3.16)

Proof. First, we prove (3.14). By Corollary 3.2 we know that if
f # C1[&1, 1], then

E R
n ( f )=O(1) \1

n+ .

Note that any element of span[1, 1�(x&a1), ..., 1�(x&an)] has at most n sign
changes and Tn(x) has n+1 equi-oscillations. Thus, using [12, Theorem 1,
p. 118], it is not difficult to obtain (3.14).

On the other hand, since

1= } lk(xk)&lk(xk+1)
xk&xk+1

(xk&xk+1) }=|l $k(')| |xk&xk+1 |,

(3.15) follows by (2.11) and (3.5).
Now we let l� k(%) :=lk(cos %), k=1, ..., n. Note that (cf. the proof of

Theorem 2.1) assumption (A) implies that >n
k=1 |ck |=O(1�n); then, recalling

(3.14) and another Markov-type inequality [5, Corollary 3.2], we easily show
(3.16) by exactly the same method as that used for the estimates in (3.14)
and (3.15). K
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Lemma 3.6 shows that the corresponding Lagrange fundamental func-
tions [lk(x)] are always orthogonal, which extends a result of the classical
polynomial interpolation (cf. [15, Ex. 1.5.20, p. 46]).

Lemma 3.6. Let [lk(x)]n
k=1 be defined by (2.13) and [ak]�

k=1/R"[&1, 1].
If k{ j, then

|
1

&1

1

- 1&x2
lk(x) lj (x) dx=0, k, j=1, ..., n. (3.17)

Proof. Note that

|
1

&1

1

- 1&x2
lk(x) l j (x) dx

=
1

T $n(xk) T $n(xj) |
1

&1

1

- 1&x2
Tn(x)

Tn(x)
(x&xk)(x&x j)

dx.

We let

T� n(x) :=
Tn(x)

(x&xk)(x&xj)
.

Since k{ j, T� n(x) has exactly n&2 zeros. This implies that its expansion
contains no constant term with respect to rational system (2.1); that is,
there exist some constants {k , k=1, ..., n, such that

T� n(x)= :
n

k=1

{k

x&ak
.

On the other hand, by [5, Corollary 4.6]

|
1

&1

1

- 1&x2

1
x&ak

Tn(x) dx=0, k=1, ..., n. (3.18)

Thus we can obtain (3.17). K

Lemma 3.7 shows that [1�(x&ak)]n
k=1 are the fixed elements of the

generalized Lagrange interpolation Ln( f, x).

Lemma 3.7. Assume [ak]�
k=1 /R"[&1, 1]. Then

Ln \ 1
x&ak

, x+#
1

x&ak
, k=1, ..., n. (3.19)
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Proof. The proof is straightforward from the defining properties of
Chebyshev spaces. However, we here give an elementary proof since we can
also prove Lemma 3.8 using the same idea as this. By (3.10) it is easy to
check that

Ln( f, x)=
1

Rn(x)
:
n

k=1

Rn(xk) f (xk) qk(x), (3.20)

where

qk(x) :=
Qn(x)

Q$n(xk)(x&xk)
, k=1, ..., n. (3.21)

Hence, if f (x)=1�(x&aj), then Rn(x) f (x) is a polynomial of degree n&1.
Therefore, by applying the classical Lagrange polynomial interpolation we
have

:
n

k=1

Rn(xk)
1

x&aj
qk(x)#

Rn(x)
x&aj

, j=1, ..., n

This implies (3.19). K

Similar to classical Hermite interpolation, we can also define the generalized
Hermite interpolation based on the zeros of Tn(x) as

Hn( f, x) := :
n

k=1

f (xk) hk(x)+ :
n

k=1

f $(xk) _k(x), (3.22)

where

hk(x) :=(1&2l $k(xk)(x&xk)) l2
k(x), k=1, ..., n, (3.23)

and

_k(x) :=(x&xk) l2
k(x), k=1, ..., n. (3.24)

One can verify that

Hn( f, xk)= f (xk), k=1, ..., n,

and

H$n( f, xk)= f $(xk), k=1, ..., n.
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Here,

Hn( f, x) # span { 1
x&a1

,
1

(x&a1)2 , ...,
1

x&an
,

1
(x&an)2= .

Lemma 3.8 gives the fixed elements of the generalized Hermite interpola-
tion Hn( f, x).

Lemma 3.8. Assume [ak]�
k=1 /R"[&1, 1]. Then

Hn \ 1
x&ak

, x+#
1

x&ak
, k=1, ..., n, (3.25)

and

Hn \ 1
(x&ak)2 , x+#

1
(x&ak)2 , k=1, ..., n. (3.26)

By the classical polynomial Hermits interpolation and using essentially the
same method as that used in Lemma 3.7, it is easy to prove Lemma 3.8. We
safely omit it.

Lemma 3.9. Assume [ak]�
k=1 /R"[&1, 1]. Let [ck] and [*k] be defined

by (2.2) and (2.21), respectively. Then

*k=|
1

&1

1

- 1&x2
l2
k(x) dx>0, k=1, ..., n, (3.27)

and

:
n

k=1

*k=?&
2?

1+(c1 } } } cn)&2 . (3.28)

Remark. Note that lk(x) # span[1�(x&a1), ..., 1�(x&an)] (k=1, ..., n)
imply that �n

k=1 lk(x)�1, which differs from the classical Lagrange poly-
nomial interpolation. Hence, we cannot prove (3.28) in the usual way (cf.
[13, Vol. III]). Moreover, (3.28) implies that

:
n

k=1

*k<?.

Proof. Note that lk(x) has the form

lk(x)= :
n

k=1

\k

x&ak
. (3.29)
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Then, by (3.18) it is easy to show that

|
1

&1

1

- 1&x2
_k(x) dx

=|
1

&1

1

- 1&x2
(x&xk) l2

k(x) dx=0, k=1, ..., n.

Since Lemma 3.8 yields

Hn(lk(x), x)=lk(x), k=1, ..., n,

from (3.22)�(3.24) and (3.29) we obtain

*k=|
1

&1

1

- 1&x2
lk(x) dx=|

1

&1

1

- 1&x2
Hn(lk(x), x) dx

=|
1

&1

1

- 1&x2
l2
k(x) dx>0, k=1, ..., n.

Equation (3.27) follows. Recall that (cf. [5, Proposition 4.1])

Tn(x)=A0+
A1

x&a1

+ } } } +
An

x&an
, (3.31)

where

A0=
(&1)n

2
((c1 } } } cn)&1+c1 } } } cn),

Ak=\c&1
k &ck

2 +
2

`
n

j=1, j{k

1&ck cj

ck&cj
, k=1, ..., n.

Equation (3.31) implies that Tn(x)&A0 # span[1�(x&a1), ..., 1�(x&an)].
Furthermore, applying Lemma 3.7 we have

|
1

&1

1

- 1&x2
(Tn(x)&A0) dx= :

n

k=1

*k(Tn(xk)&A0)=&A0 :
n

k=1

*k .

(3.32)

Note that (cf. [5, Corollary 4.6, (4.13)])

|
1

&1

1

- 1&x2
Tn(x) dx=(&1)n ?c1 } } } cn . (3.33)

Then, combining (3.32) and (3.33), we can easily show (3.28). K
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4. PROOFS OF THEOREMS

Proof of Theorem 2.1. First, we claim that assumption (A) implies that
>n

k=1 |ck |=O(1�n). By the inequality

1&x
1+x

�e&2x, x�0,

and letting x=(1&|ck | )�(1+|ck | ), we have

|ck |�exp \&2
1&|ck |
1+|ck |+ .

Hence assumption (A) implies that

`
n

k=1

|ck |�exp \&2 :
n

k=1

1&|ck |
1+|ck |+�exp \&2

1&#
1+#

n+ .

Let x=cos %, xk=cos %k , and xj=cos % j be the point nearest to x and
let i=|k& j |. Then by (3.16) we have

d4(:)
i
n

�d5(:) |%k&%j |�|%&%k |�d6(:) |%k&%j |�d7(:)
i
n

. (4.1)

Since

Ln(x)=|Tn(x)| :
n

k=1

- 1&x2
k

Bn(xk) |x&xk |
,

sin %k�2 sin
%+%k

2
, k=1, ..., n,

|cos %&cos %k |=2 } sin
%+%k

2
sin

%&%k

2 } ,
and

0�
%

sin %�2
�?, |%|�?,
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by (3.5) one can show that

Ln(x)�|lj (x)|+ :
k{ j

|lk(x)|�- d2(:)+
1+:
1&#

1
n

:
k{ j

sin %k

|cos %&cos %k |

�- d2(:)+
1+#
1&#

1
n

:
k{ j

1
|sin(%&%k)�2|

�- d2(:)+
1+#
1&#

1
n

?
d4(:)

:
k{ j

n
i
,

for x # [&1, 1]. Hence

Ln=O(ln n).

On the other hand, by (3.5) we have

Ln�Ln(1)�
1&#
1+#

1
n

:
n

k=1
�1+xk

1&xk
.

Note that (4.1) implies %k t(k&1)�n, k=1, ..., n; hence, using a method
similar to that used in [15, p. 18], we can prove

Ln�d8(:) ln n.

Thus, Theorem 2.1 follows. K

Proof of Corollary 2.2. Let p(x) be the best approximation for f from
span[1�(x&a1), ..., 1�(x&an)] on [&1, 1]. Then

&p& f &[&1, 1]�E R
n ( f ). (4.2)

Lemma 3.6 yields

Ln( f, x)& f (x)=Ln( f &p, x)+( p(x)& f (x)); (4.3)

hence, it is easy to obtain (2.18) in the usual way.
Since assumption (A) implies that >n

k=1 |ck |=O(1�n), Corollary 3.2
implies that limn � � Ln( f, x)= f (x) uniformly on [&1, 1]. K
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Proof of Theorem 2.3. By (4.3) and Lemmas 3.6 and 3.9 we have

|
1

&1

1

- 1&x2
|Ln( f, x)& f (x)|2 dx

�2 \|
1

&1

1

- 1&x2
|Ln( f &p, x)| 2 dx+|

1

&1

1

- 1&x2
| p(x)& f (x)| 2 dx+

�2 |
1

&1

1

- 1&x2
:
n

k=1

( f (xk)& p(xk))2 l2
k(x) dx+2?(E R

n ( f ))2

�2(ER
n ( f ))2 \ :

n

k=1

*k+?+�4?(E R
n ( f ))2.

This is (2.19).
On the other hand, ��

k=1 (1&|ck | )=� implies that span[1�(x&a1), ...,
1�(x&an), ...] is dense on C[&1, 1] (cf. [1, Problem 7, p. 257]); hence we
obtain (2.20). K

Proof of Theorem 2.4. We may know that Lemma 3.9 implies (a) of
Theorem 2.4 and (b) follows from Lemmas 3.7, 3.8, and 3.9 and (3.31).
Part (c) is easily obtained. K

Proof of Theorem 2.5. Clearly, we may prove the sufficient condition
from (2.23). On the other hand, since

Qn( f ) � |
1

&1

f (x)

- 1&x2
dx, n � �

for every continuous function, by Steklov's theorem (cf. [13, Theorem 4,
Vol. III, p. 124]) we know that the systems of interpolating nodes are
dense on [&1, 1], that is, Mn � 0 (n � �), where Mn is defined by (3.14).
Thus, using Borwein's theorem (cf. [2, Theorem 1]) we have E R

n ( f ) � 0
(n � �). Therefore, we may complete the proof of the necessary condition
by using [1, Problem 7, p. 254] or [3, Corollary 3]. K

5. REMARKS

As we mentioned in Section 3, that lk(x) # span[1�(x&a1), ..., 1�(x&an)]
implies

:
n

k=1

lk(x)�1, (5.1)

where [lk(x)] are defined by (2.13).
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Therefore, in order to keep the property �n
k=1 lk(x)#1 we may construct

a Lagrange interpolation in another rational system, [1, 1�(x&a1),
1�(x&a2), ..., 1�(x&an&1)] as follows.

For convenience, we still use Ln( f, x) to denote the Lagrange interpola-
tion operator in the rational system [1, 1�(x&a1), 1�(x&a2), ...]. It is easy
to see that

Ln( f, x) := :
n

k=1

f (xk)
x&an

xk&an
lk(x) := :

n

k=1

f (xk) lk(x) (5.2)

satisfies

Ln( f, xk)= f (xk), k=1, ..., n,

and

Ln( f, x) # span {1,
1

x&a1

, ...,
1

x&an&1= ,

where

lk(x) :=
x&an

xk&an
lk(x)

is the corresponding Lagrange fundamental function with respect to the
rational system [1, 1�(x&a1), ..., 1�(x&an&1)].

One may easily check that if

Ln(1, x)#1, (5.3)

and

Ln \ 1
x&ai

, x+#
1

x&a i
, i=1, ..., n&1, (5.4)

it follows that

:
n

k=1

lk(x)#1. (5.5)

Note that

} x&an

xk&an }�
|an |+1
|an |&1

=\1+|ck |
1&|ck |+

2
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for x # [&1, 1]. Therefore we have the following approximation theorem
with respect to the uniform approximation:

Theorem 5.1. Let f # C[&1, 1] and [ak]�
k=1 /R"[&1, 1] satisfy

assumption (A). Then

&Ln( f, x)& f (x)&[&1, 1]�d9(:) ln nE Q
n&1( f ). (5.6)

Furthermore, if f (x) satisfies the Dini�Lipschitz condition, then

lim
n � �

Ln( f, x)= f (x)

uniformly on [&1, 1], where

E Q
n&1( f ) := inf

;k # R " f (x)&\;0+
;1

x&a1

+ } } } +
;n&1

x&an&1+"[&1, 1]

. (5.7)

The routine of its proof is the same as that of Theorem 2.3; we omit it
here.

On the other hand, by some simple calculations we may get

|
1

&1

1

- 1&x2
lk(x) lj (x) dx

=
- 1&x2

k - 1&x2
j

Bn(xk) Bn(x j)(xk&ak)(xj&aj) |
1

&1

1

- 1&x2
T 2

n(x) dx.

Hence we conclude that

|
1

&1

1

- 1&x2
lk(x) lj (x) dx{0. (5.8)

Therefore, in order to keep the property �n
k=1 lk(x)#1, we, unfortunately,

must destroy such a beautiful orthogonal property as (3.18).
We may also get a similar theorem with respect to mean convergence.

We omit the details here.
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